for C_H strain

$$\frac{a_{1}}{a_{2}} = a \int \frac{1}{3} (1,0,0)$$

$$\frac{a_{2}}{a_{2}} = a \int \frac{1}{3} (-1/2, \frac{1}{3}/2, 0)$$

$$\frac{c}{a_{2}} = c \int \frac{1}{3} (0,0, \frac{1}{3} - 1)$$
and $C_{H} = \left(\frac{d^{2}W}{d \frac{1}{3} - 2}\right) \int \frac{(9/2)}{\frac{1}{3} - 1}$

A further condition is obtained by considering the first derivatives of the energy with respect to the strains. The conditions for equilibrium with no applied stress are

$$\left(\frac{dW}{d\eta}\right)_{\eta=1} = 0$$
 and $\left(\frac{dW}{dg}\right)_{g=1} = 0$

In the case of the C_{66} strain all three contributions have first derivatives which are independently zero; in the case of the $C_{\rm H}$ strain the Coulomb and the full zone Fermi first derivatives yield negative contributions and must be matched by a positive contribution from the overlap-hole term to comply with the equilibrium condition, which thus becomes an independent and useful condition.

A $C_{l_ll_l}$ type strain lowers the symmetry of the crystal such that the calculations become quite involved. No attempt was made to account for the $C_{l_ll_l}$ shear constant.